Abstract:Detecting uncivil language is crucial for maintaining safe, inclusive, and democratic online spaces. Yet existing classifiers often misinterpret posts containing uncivil cues but expressing civil intents, leading to inflated estimates of harmful incivility online. We introduce LinGO, a linguistic graph optimization framework for large language models (LLMs) that leverages linguistic structures and optimization techniques to classify multi-class intents of incivility that use various direct and indirect expressions. LinGO decomposes language into multi-step linguistic components, identifies targeted steps that cause the most errors, and iteratively optimizes prompt and/or example components for targeted steps. We evaluate it using a dataset collected during the 2022 Brazilian presidential election, encompassing four forms of political incivility: Impoliteness (IMP), Hate Speech and Stereotyping (HSST), Physical Harm and Violent Political Rhetoric (PHAVPR), and Threats to Democratic Institutions and Values (THREAT). Each instance is annotated with six types of civil/uncivil intent. We benchmark LinGO using three cost-efficient LLMs: GPT-5-mini, Gemini 2.5 Flash-Lite, and Claude 3 Haiku, and four optimization techniques: TextGrad, AdalFlow, DSPy, and Retrieval-Augmented Generation (RAG). The results show that, across all models, LinGO consistently improves accuracy and weighted F1 compared with zero-shot, chain-of-thought, direct optimization, and fine-tuning baselines. RAG is the strongest optimization technique and, when paired with Gemini model, achieves the best overall performance. These findings demonstrate that incorporating multi-step linguistic components into LLM instructions and optimize targeted components can help the models explain complex semantic meanings, which can be extended to other complex semantic explanation tasks in the future.
Abstract:Reinforcement learning with verifiable rewards has shown notable effectiveness in enhancing large language models (LLMs) reasoning performance, especially in mathematics tasks. However, such improvements often come with reduced outcome diversity, where the model concentrates probability mass on a narrow set of solutions. Motivated by diminishing-returns principles, we introduce a set level diversity objective defined over sampled trajectories using kernelized similarity. Our approach derives a leave-one-out marginal contribution for each sampled trajectory and integrates this objective as a plug-in advantage shaping term for policy optimization. We further investigate the contribution of a single trajectory to language model diversity within a distribution perturbation framework. This analysis theoretically confirms a monotonicity property, proving that rarer trajectories yield consistently higher marginal contributions to the global diversity. Extensive experiments across a range of model scales demonstrate the effectiveness of our proposed algorithm, consistently outperforming strong baselines in both Pass@1 and Pass@K across various benchmarks.
Abstract:Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
Abstract:Interactive humanoid video generation aims to synthesize lifelike visual agents that can engage with humans through continuous and responsive video. Despite recent advances in video synthesis, existing methods often grapple with the trade-off between high-fidelity synthesis and real-time interaction requirements. In this paper, we propose FlowAct-R1, a framework specifically designed for real-time interactive humanoid video generation. Built upon a MMDiT architecture, FlowAct-R1 enables the streaming synthesis of video with arbitrary durations while maintaining low-latency responsiveness. We introduce a chunkwise diffusion forcing strategy, complemented by a novel self-forcing variant, to alleviate error accumulation and ensure long-term temporal consistency during continuous interaction. By leveraging efficient distillation and system-level optimizations, our framework achieves a stable 25fps at 480p resolution with a time-to-first-frame (TTFF) of only around 1.5 seconds. The proposed method provides holistic and fine-grained full-body control, enabling the agent to transition naturally between diverse behavioral states in interactive scenarios. Experimental results demonstrate that FlowAct-R1 achieves exceptional behavioral vividness and perceptual realism, while maintaining robust generalization across diverse character styles.
Abstract:Existing AI-driven video creation systems typically treat script drafting and key-shot design as two disjoint tasks: the former relies on large language models, while the latter depends on image generation models. We argue that these two tasks should be unified within a single framework, as logical reasoning and imaginative thinking are both fundamental qualities of a film director. In this work, we propose UniMAGE, a unified director model that bridges user prompts with well-structured scripts, thereby empowering non-experts to produce long-context, multi-shot films by leveraging existing audio-video generation models. To achieve this, we employ the Mixture-of-Transformers architecture that unifies text and image generation. To further enhance narrative logic and keyframe consistency, we introduce a ``first interleaving, then disentangling'' training paradigm. Specifically, we first perform Interleaved Concept Learning, which utilizes interleaved text-image data to foster the model's deeper understanding and imaginative interpretation of scripts. We then conduct Disentangled Expert Learning, which decouples script writing from keyframe generation, enabling greater flexibility and creativity in storytelling. Extensive experiments demonstrate that UniMAGE achieves state-of-the-art performance among open-source models, generating logically coherent video scripts and visually consistent keyframe images.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Bilingual mathematical problem solving needs a clear link between language reasoning and symbolic calculation. Large language models often handle language well but are weak in accurate computation. This paper presents HERALD (Hybrid Ensemble Reasoning with Adaptive Learning and Distillation), a framework that joins reasoning and calculation using NuminaMath-7B-TIR, GPT-4o, and Mistral-7B. HERALD uses adaptive routing, tool-based reinforcement learning, and knowledge distillation to connect different reasoning paths. Confidence calibration keeps weighting stable, and dual-path checking keeps results correct. Reinforcement learning controls tool use to cut redundancy, and distillation lowers delay without hurting accuracy. The system shows that combining symbolic checking, adaptive ensembles, and bilingual fine-tuning helps achieve both fluent reasoning and precise calculation. HERALD offers a practical solution for multilingual mathematical reasoning with better accuracy, stability, and clarity.
Abstract:Large speech generation models are evolving from single-speaker, short sentence synthesis to multi-speaker, long conversation geneartion. Current long-form speech generation models are predominately constrained to dyadic, turn-based interactions. To address this, we introduce JoyVoice, a novel anthropomorphic foundation model designed for flexible, boundary-free synthesis of up to eight speakers. Unlike conventional cascaded systems, JoyVoice employs a unified E2E-Transformer-DiT architecture that utilizes autoregressive hidden representations directly for diffusion inputs, enabling holistic end-to-end optimization. We further propose a MM-Tokenizer operating at a low bitrate of 12.5 Hz, which integrates multitask semantic and MMSE losses to effectively model both semantic and acoustic information. Additionally, the model incorporates robust text front-end processing via large-scale data perturbation. Experiments show that JoyVoice achieves state-of-the-art results in multilingual generation (Chinese, English, Japanese, Korean) and zero-shot voice cloning. JoyVoice achieves top-tier results on both the Seed-TTS-Eval Benchmark and multi-speaker long-form conversational voice cloning tasks, demonstrating superior audio quality and generalization. It achieves significant improvements in prosodic continuity for long-form speech, rhythm richness in multi-speaker conversations, paralinguistic naturalness, besides superior intelligibility. We encourage readers to listen to the demo at https://jea-speech.github.io/JoyVoice




Abstract:We address the problem of translating informal mathematical proofs expressed in natural language into formal proofs in Lean4 under a constrained computational budget. Our approach is grounded in two key insights. First, informal proofs tend to proceed via a sequence of logical transitions - often implications or equivalences - without explicitly specifying intermediate results or auxiliary lemmas. In contrast, formal systems like Lean require an explicit representation of each proof state and the tactics that connect them. Second, each informal reasoning step can be viewed as an abstract transformation between proof states, but identifying the corresponding formal tactics often requires nontrivial domain knowledge and precise control over proof context. To bridge this gap, we propose a two stage framework. Rather than generating formal tactics directly, we first extract a Chain of States (CoS), a sequence of intermediate formal proof states aligned with the logical structure of the informal argument. We then generate tactics to transition between adjacent states in the CoS, thereby constructing the full formal proof. This intermediate representation significantly reduces the complexity of tactic generation and improves alignment with informal reasoning patterns. We build dedicated datasets and benchmarks for training and evaluation, and introduce an interactive framework to support tactic generation from formal states. Empirical results show that our method substantially outperforms existing baselines, achieving higher proof success rates.
Abstract:While traditional and neural video codecs (NVCs) have achieved remarkable rate-distortion performance, improving perceptual quality at low bitrates remains challenging. Some NVCs incorporate perceptual or adversarial objectives but still suffer from artifacts due to limited generation capacity, whereas others leverage pretrained diffusion models to improve quality at the cost of heavy sampling complexity. To overcome these challenges, we propose S2VC, a Single-Step diffusion based Video Codec that integrates a conditional coding framework with an efficient single-step diffusion generator, enabling realistic reconstruction at low bitrates with reduced sampling cost. Recognizing the importance of semantic conditioning in single-step diffusion, we introduce Contextual Semantic Guidance to extract frame-adaptive semantics from buffered features. It replaces text captions with efficient, fine-grained conditioning, thereby improving generation realism. In addition, Temporal Consistency Guidance is incorporated into the diffusion U-Net to enforce temporal coherence across frames and ensure stable generation. Extensive experiments show that S2VC delivers state-of-the-art perceptual quality with an average 52.73% bitrate saving over prior perceptual methods, underscoring the promise of single-step diffusion for efficient, high-quality video compression.